

Reunion Gold announces a significant resource estimate for its Matthews Ridge Manganese Project

Longueuil, Canada, February 21, 2013. Reunion Gold Corporation (TSX-V: RGD) ("Reunion or the "Company") is pleased to announce an initial resource estimate for the manganese deposits of its 100%-owned Matthews Ridge Project in northwest Guyana, South America.

Highlights:

- Total Unconstrained Measured and Indicated Resources of 32.4M tonnes grading 14% Mn when using an 8% Mn cutoff grade on the footprint of Matthew's Ridge.
- Additional 5.3 M tonnes of Unconstrained Inferred Resources grading 15% Mn at an 8% Mn cutoff grade on the Matthew's Ridge Footprint and from two other prospects.
- Total Constrained Measured and Indicated Resources of 29.1M tonnes grading 14% Mn at a cutoff grade of 6-8% Mn.
- Robust resource model as demonstrated by a 90% conversion rate of the measured and indicated resources from Unconstrained to Constrained Resources.
- Metallurgical testwork indicates good manganese recovery to concentrates of marketable quality.

Table 1: Unconstrained Mineral Resource Summary at an 8% Mn cut off grade

		U	nconstraiı	ned (see n	otes belov	v Table 8))	
	Measured		Indicated		Total	M&I	Inferred	
	'000 t	% Mn	'000 t	% Mn	'000 t	% Mn	'000 t	% Mn
Matthew's Ridge	16,987	14	15,388	13	32,375	14	3,368	15
Arakaka prospect	-	-	-	-	-	-	168	13
Pipiani prospect	-	-	-	-	-	-	1,756	15
Total	16,987	14	15,388	13	32,375	14	5,292	15

Table 2: Constrained Mineral Resource Summary

		Constrained (see notes below Table 8)*								
	Measured		Indicated		Total M&I		Inferred			
	'000 t	% Mn	'000 t	% Mn	'000 t	% Mn	'000 t	% Mn		
Matthew's Ridge	15,655	15	13,508	13	29,163	14	2,786	16		
(Hills 1 – 9)										
Total	15,655	15	13,508	13	29,163	14	2,786	16		

*Cut off varies by hill and material type between 6 and 8% for constrained resources.

Other Project Highlights:

- Located in Guyana, a mining friendly jurisdiction;
- Low level of infrastructure requirements;
- Simple open pit mining and processing operation;
- The defined resources are of sufficient scale and quality to form the foundation of the ongoing pre-feasibility study to define the economics of project development;
- Four other prospects in the Matthews Ridge region are being explored for additional resources;
- Reunion holds exploration licenses for an area of 185 square kilometers in northwest Guyana.

Resource Estimate

This first Matthews Ridge mineral resources estimate was prepared by Mr. Réjean Sirois, ing., P. Geo., of G Mining Services Ltd. ("GMining"), a Canadian mining consulting firm, for the four types of mineralized materials forming the deposits (defined in Appendix 1). It encompasses over 65 thousand metres of drilling completed by Reunion between 2011 and 2012. The resources have been categorized as measured, indicated or inferred. They have been estimated on an unconstrained basis, as well as, on a constrained basis in a Whittle shell with the utilisation of metallurgical, economical and geotechnical constraints. The results are tabulated below. See Appendix 1 for additional information on parameters and methodology used for resource estimates. (link to Appendix 1)

Table 3: Constrained Resources – Measured, Indicated and Inferred – Matthews Ridge (Hills 1 to 9)

Resource	Tonnage	Grade	Lump Con	centrate	Fine Conc	Total Concentrate	
Classification	('000 t)	% Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)
Measured	15,655	15	3,269	38	1,705	36	4,974
Indicated	13,508	13	1,945	38	1,465	36	3,410
Total M&I	29,163	14	5,214	38	3,170	36	8,384
Inferred	2,786	16	608	39	353	37	961

Table 4: Unconstrained Measured Resources – Matthews Ridge (Hills 1 to 9)

Cutoff grade	Tonnage	Grade	Lump concentrate		Fine conc	Total concentrate	
%Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)
15%	6,968	19	2,071	41	1,119	39	3,189
10%	13,426	18	3,241	40	1,696	37	4,936
8%	16,987	14	3,535	39	1,861	37	5,396
6%	23,760	12	3,546	28	1,861	26	5,407

Table 5: Unconstrained Indicated Resources – Matthews Ridge (Hills 1 to 9)

Cutoff grade	Tonnage	Grade	Lump concentrate		Fine conc	Total concentrate		
%Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)	
15%	3,832	18	751	40	605	38	1,356	
10%	11,221	14	1,799	39	1,337	36	3,136	
8%	15,388	13	2,174	38	1,570	36	3,744	
6%	20,175	11	2,422	37	1,721	34	4,143	

Table 6: Unconstrained Inferred Resources – Matthews Ridge (Hills 1 to 9)

Cutoff grade	Tonnage	Grade	Lump concentrate		Fine concen	Total concentrate	
%Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)
15%	1,591	19	432	42	252	39	684
10%	2,851	16	632	40	366	38	998
8%	3,368	15	675	40	388	37	1,062
6%	4,445	13	698	33	402	31	1,100

Table 7: Unconstrained Inferred Resource – Arakaka prospect

Cutoff grade	Tonnage (detrital material)	Grade	Lump Concentrate		Fine Concer	Total Concentrate	
%Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)
15%	52	19	13	40	5	37	18
10%	124	15	24	38	9	35	33
8%	168	13	28	37	10	35	37
6%	213	12	30	36	9	35	39

Table 8: Unconstrained Inferred Resource – Pipiani prospect

Cutoff grade	Tonnage (detrital material)	Grade	Lump Concentrate		Fine Concer	Total Concentrate					
%Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)				
15%	712	19	180	40	78	37	257				
10%	1,525	16	310	38	123	36	433				
8%	1,756	15	334	38	127	35	461				
6%	1,914	14	344	37	127	35	471				

Notes:

- 1. The effective date of the mineral resource estimate is February 20, 2013.
- 2. Unconstrained resources mean total in-situ resources.
- 3. Constrained resources mean resources contained within a Whittle shell when applying industry standard parameters for costs, geotechnical constraints, metallurgical recoveries and indicative value of the final product. The cut-off grade varies by hill and material type and is generally between 6% and 8%.
- 4. Lump Product is defined as material from +6mm to -25mm in size while Fine Product is +0.85mm to 6mm in size.
- 5. Mineral resources, which are not mineral reserves, do not have demonstrated economic viability. The estimate of mineral resources may be affected by marketing, fiscal, permitting, legal, or other relevant issues.
- 6. Totals and average grades are subject to rounding to the appropriate precision.

David Fennell, Executive Chairman of Reunion, said: "This is a tremendous accomplishment for Reunion's team. Since obtaining the prospecting licenses for Matthews Ridge in late 2010, our team has embarked on an extensive drilling campaign to establish an initial resource estimate and move Matthews Ridge towards development. We believe that the Matthews Ridge project has the potential to become a leading producer of manganese in the Americas. While this resource is very substantial, many undrilled targets remain available for additional resource growth."

General Project Description

The Matthews Ridge Project consists of four Prospecting Licenses covering an area of 185 km² located in northwest Guyana, in and around the former Matthews Ridge mine (See maps - Figure 1 and 2). Manganese ore was mined from 1960 to 1968 by a subsidiary of Union Carbide and exported via railroad and a fluvial port.

Manganese deposits have been explored in three prospects: 1) Matthews Ridge, corresponding to a series of nine hills extending for 15 km, of which five were previously mined; 2) Arakaka, which is the eastern extension of Hill 1, and 3) Pipiani, which is located 65 km to the southeast of Matthews Ridge.

Manganese mineralization is hosted by the Barama Group sedimentary rocks of Proterozoic age and consists of deposits formed as a result of supergene enrichment of manganese-rich sediments under a tropical climate.

Metallurgical Testing

As part of the metallurgical testing of mineralized materials, representative samples of each material type were processed by scrubbing, wet screening and jigging with an AlljigTM lab-scale jig operated by FILAB Guyana Laboratories under the supervision of GMining. Core samples were split with one portion of the sample being placed into a composite sample of similar material and processed by jigging while the remaining portion was sent to SGS Lakefield in Canada for metallurgical characterization through heavy liquid separation (HLS). GMining supervised all work performed by SGS. HLS results were correlated to the composite jigging results.

Based on the metallurgical testwork and characterization by material type, a relationship was established between the feed grade of the material and its potential upgradability. This was done by associating the feed grade of the material, the concentrate recovery and the concentrate grade while applying minimum concentrate grade requirements set at 36% and 34% Mn, respectively, for the Lump and Fine products.

GMining concluded that the Matthew's Ridge ore is upgradable to a marketable concentrate. (see Reunion's August 27, 2012 news release). Two distinct types of marketable concentrate can be produced. A higher valued Lump Concentrate (-25 mm + 6 mm) and a lower valued Fine Concentrate (-6 mm + 0.85 mm). The Lump product represents approximately 62% of the total concentrate while the Fine product represents 38% of the total when constrained within a Whittle shell.

The metallurgical testwork also tracked the level of impurities in the feed and in the different concentrates. It is noted that the level of silica and alumina decrease by half while the concentration of iron doubles as a result of jigging. The level of phosphorous remains relatively unchanged, at very low levels. All average impurity levels are within current industry benchmark values for similar concentrates destined to silica-manganese furnaces.

Table 9: Average Resource Impurity Concentrations by Product Size.

T	Range (%)					
Impurity	Lump	Fine				
SiO ₂	19-23	23-25				
Al_2O_3	8-9	9-11				
Fe	4.5-6*	4.5-6*				
P	0.05-0.06	0.05-0.06				
LOI	12-13	12-14				

^{*}Higher grade Fe contents (up to 11%) are observed in detrital material concentrates

Grade and Tonnage Reporting

The Matthews Ridge mineral resource was estimated using the Canadian Institute of Mining, Metallurgy and Petroleum (CIM), CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines prepared by the CIM Standing Committee on Reserve Definitions and adopted by CIM Council.

The resource model has been categorized as Measured, Indicated and Inferred Resources using the CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines (November 2010).

Plans for 2013

The defined resources reported here provide a platform for Reunion to advance the Matthews Ridge Manganese Project through feasibility. Subject to available financing, the Company's plan for 2013 would be to complete an aggressive resource definition program on the Pipiani and Arakaka prospects, upgrade the inferred resources of the Matthew's Ridge trend and complete a pre-feasibility study.

Qualified Persons

The exploration data used to generate the resource estimates contained in this press release was approved by Carlos H. Bertoni, P. Geo., a consultant to the Company. Mr. Bertoni is an independent 'qualified person' within the meaning of that term under Canadian National Instrument 43-101 ("NI 43-101").

The Matthews Ridge resource estimates reported in this news release were undertaken by Mr. Réjean Sirois, ing., P. Geo., of GMining. Mr. Sirois is an independent 'qualified person' within the meaning of that term under NI 43-101. Mr. Sirois has reviewed and approved the contents of this press release insofar as the Matthews Ridge mineral resource estimate is concerned.

Mr. Ahmed Bouajila, ing., of GMining has supervised the metallurgical testing described in this news release. Mr. Bouajila is an independent 'qualified person' within the meaning of that term under NI 43-101. Mr. Bouajila has reviewed and approved the contents of this press release insofar as the Matthews Ridge metallurgical testwork is concerned.

All other technical information contained in this press release was prepared and approved by Mathieu Gignac ing., of GMining. Mr Gignac is an independent 'qualified person' within the meaning of that term under NI 43-101.

A technical report for the mineral resource estimate in compliance with NI 43-101 will be filed on SEDAR within 45 days of this press release.

About the Company

Reunion Gold Corporation is a mineral exploration company focused on the acquisition, exploration and development of mineral properties in the Guyana Shield of South America. The Company through its 100% indirectly owned subsidiary Reunion Manganese Inc., has assembled a large, strategic land position to conduct exploration and development activities for manganese in the North West District of Guyana. The Company also has the right to acquire a 100% interest in a gold exploration project located in the Lely Mountain area in Eastern Suriname.

Manganese is the fourth largest metal consumed in the world, behind iron, aluminum and copper. It is a key component in steel and iron production with no viable substitute.

Additional information about the Company is available on SEDAR at www.sedar.com and at www.reuniongold.com.

Forward Looking Statements

This press release contains forward-looking information. Although the Company believes in light of the experience of its officers and directors, current conditions and expected future developments and other factors that have been considered appropriate that the expectations reflected in this forward-looking information are reasonable, undue reliance should not be placed on them because the Company can give no assurance that they will prove to be correct. Forward looking information in this news release includes statements with respect to: the mineral resource estimates and potential expansion and upgrade to a higher level of confidence; the results of metallurgical testwork; the potential to develop the project into a mine and becoming a leading producer of manganese; and statements about the Company's plan and objectives for 2013. Forward-looking information involves known and unknown risks, uncertainties, assumptions and other factors that may cause actual results or events to differ materially from those anticipated in such forward-looking information. The forward-looking statements contained in this press release are made as of the date hereof and the Company undertakes no obligations to update publicly or revise any forward-looking statements or information, whether as a result of new information, future events or otherwise, unless so required by applicable securities laws.

Neither the TSX Venture Exchange nor its Regulation Services Provider (as that term is defined in the policies of the TSX Venture Exchange) accepts responsibility for the adequacy or accuracy of this press release.

For further information please contact:

REUNION GOLD CORPORATION

James Crombie, President and Chief Executive Officer

Telephone: +1 450.677.2585 Facsimile: +1 450.677.2601 Email: info@reuniongold.com Website: www.reuniongold.com

Appendix 1

Parameters and methodology used for resource estimates

Mineralized material

The mineralized materials forming this resource include a combination of material from tailings, detritic deposits, saprolite deposits, and transition material, which are described below:

• Tailings:

The previous mining of manganese ore at Matthews Ridge produced a significant volume of washplant reject material (tailings), which did not meet commercial specifications at the time, but that was conveniently deposited next to the processing plant in a shallow valley. The Company drilled this material with 119 holes using a manual Banka and collected 208 samples.

• Detrital:

The detrital deposits are characterized by fairly loose manganese-rich nodules and fragments forming blankets covering hills with subjacent saprolitic mineralization and easily extractable by free digging. The Company sampled this material with 365 pits along the Matthews Ridge prospect (Hills 1 to 9) area, 182 pits at the Arakaka prospect and 351 pits at the Pipiani prospect.

• Saprolite:

The saprolite deposits are formed by manganese oxide and hydroxide minerals occurring in clastic sediments that were thoroughly weathered and occur along the crest of hills as the main components of the lateritic profile. This mineralized material was sampled in the Matthews Ridge prospect (Hills 1 to 9) area by 142 trenches, 47,570 meters of diamond drilling in 735 holes, and 17,361 meters of reverse circulation drilling in 283 holes. Trenches, drill holes and pit collars were surveyed by independent surveyors and diamond drill holes were down-hole surveyed, on average, every 30 meters using electronic survey equipment. The Matthews Ridge prospect (Hills 1 to 9) area has been drilled on a nominal 50 meter by 50 meter grid spacing.

• Transition:

The so-called transition material consists of mineralized saprolite at the transition to fresh rock, where the manganese-bearing sediments are incompletely weathered. This material was sampled by diamond and reverse circulation drilling only.

Sampling

Trench sampling was conducted as channels on the wall just above the trench floor on one meter intervals. Diamond drilling was done using HQ-diameter casing and triple-tube core barrel to maximize recovery. Half of the core was used for sampling at regular 1.5 m intervals. Reverse circulation drilling was done with four-inch casing, sampling at every meter and splitting the rock chips once in the field and processing an entire half sample. Banka drilling of tailings was done with six-inch casing and sampling at every meter. Detrital material was sampled from pits and trenches with 30 cm-wide vertical channels.

Assaying, Quality Assurance and Quality Control

Standard reference materials, internal standards, blanks and duplicate samples have been used to control laboratory accuracy and precision. Drill core sample preparation was done by Activation Laboratories Ltd. and ACME Laboratories at their facilities in Georgetown. It comprised of crushing to minus 2 mm and pulverization passing

200 mesh, followed by XRF assays for manganese and other relevant oxides at their laboratories in Canada. Sample preparation and XRF assay of reverse circulation drill and detrital samples were done by FILAB Guyana Laboratories on site using the same methodology described above.

Density Measurements

Density measurements were routinely taken from diamond drill core on samples spaced at approximately four meters down hole. The "wet" and "dry" densities of the drill core segments were measured using the industry-standard hydrostatic method, but only the dry density values (with measurement of water loss in oven) were used for the resource estimate. The densities of tailings and detritic materials were measured using a bulk technique by digging small pits on representative occurrences of these materials.

Resource and Grade Modeling

The geological units were interpreted on sections by Reunion Manganese personnel. GMining Services validated the interpretation and created 3D geological envelopes that were used to constrain the grade estimation during the interpolation process. Resource estimation was completed using the geostatistical estimation technique, called Ordinary Kriging ("OK"). Validation of the estimated manganese grades and other elements such as SiO₂, Al₂O₃, P and Fe were performed on cross-sections and plan views.

Variography and Grade Capping

The continuity in three dimensions of the various grade elements was studied using the Correlograms technique. Parameters were defined for each unit according to the material types and applied to each element during the estimation process. Hard boundary technique was used to avoid unnecessary grade smearing during interpolation. Statistical analysis was performed on all the elements. All the populations follow a log-normal distribution and a high grade limit of 30% Mn was used to avoid smearing of the high grade values.

Parameters Utilized to Estimate Constrained Resources

A number of industry standard and benchmark values were utilized in order to constrain the Matthew's Ridge prospect (Hills 1 to 9) resources to a Whittle shell. Resources from Arakaka and Pipiani prospects have not been evaluated. The main input parameters for operating costs and concentrate pricing include:

Costs							
Mining	2.00	\$/t mined					
Processing and Power	3.00 \$/t milled						
G&A	5.00	\$/t milled					
Concentrate Transportation	30.00	\$/t moved					
Concentrate Pricing (FOB Guyana)							
Lump 40%	4.38	\$/dmtu					
Lump 38%	4.18	\$/dmtu					
Fine 40%	3.32	\$/dmtu					
Fine 38%	3.12	\$/dmtu					
Fine 36%	2.92	\$/dmtu					

Other inputs include the metallurgical equations by material type as generated by the metallurgical testwork. The cut-off grades utilized vary by hill and material type and are generally between 6% and 8%. The cut off grades are generally defined by the upgradability of the material, meaning that below 6 to 8%, it was impossible to upgrade the material to a marketable concentrate grade.

Table 10: Detailed Constrained Measured, Indicated and Inferred by material type

Matthew's Ridge (Hills 1 to 9)

Material Resource		Tonnage	Grade	-	ncentrate + 6mm)		ncentrate + 1mm)	Total Concentrate
Type	Classification	'000 t	(%) Mn	('000t)	(%) Mn	('000t)	(%) Mn	('000t)
	Measured	-	-	-	-	-	-	-
Detrital	Indicated	2,447	15	464	38	175	35	639
	Inferred	169	15	32	38	12	36	45
	Measured	12,320	15	2,574	38	1,354	36	3,928
Saprolite	Indicated	8,497	12	1,213	38	851	36	2,064
	Inferred	1,426	16	311	39	173	36	484
	Measured	3,336	14	695	38	351	36	1,046
Transition	Indicated	1,566	14	269	39	182	36	450
	Inferred	1,191	16	265	40	168	37	433
Tailings	Indicated	998	18	-	-	257	37	257
Constant	Measured & Indicated	29,163	14	5,214	38	3,170	36	8,384
Grand Total	Inferred	2,786	16	608	39	353	37	961

Table 11: Detailed Unconstrained Measured Resources by material type Matthew's Ridge (Hills 1 to 9)

Material	Cutoff Grade	Tonnage	Grade	Lump Con (-25mm +			ncentrate + 1mm)	Total Concentrate
Type	% Mn	('000 t)	% Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)
	15%	-	=	=	-	-	=	-
Detrital	10%	_	-	-	-	-	-	-
Denital	8%	-	-	-	-	-	=	-
	6%	-	-	-	-	-	-	-
	15%	5,597	19	1,657	41	904	39	2,560
Saprolite	10%	10,612	18	2,564	40	1,348	37	3, 912
Sapronte	8%	13,208	15	2,779	39	1,468	36	4,247
	6%	17,926	13	2,788	29	1,468	27	4,256
	15%	1,371	19	414	41	215	39	629
Transition	10%	2,814	15	677	40	348	37	1,025
Transition	8%	3,778	14	756	39	393	37	1,149
	6%	5,835	11	757	25	393	24	1,151
	15%	_	-	-	-	-	-	-
Tailings	10%	-	-	-	-	-	-	-
Tamings	8%	-	-	-	-	-	-	-
	6%	-	-	-	-	-	-	-
A 11	15%	6,968	19	2,071	41	1,119	39	3,189
All Material	10%	13,426	18	3,241	40	1,696	37	4,936
Types	8%	16,987	14	3,535	39	1,861	37	5,396
Hills 1 to 9	6%	23,760	12	3,546	28	1,861	26	5,407

Table 12: Detailed Unconstrained Indicated Resources by material type Matthew's Ridge (Hills 1 to 9)

Material Type	Cutoff Grade	Tonnage	Grade	Lun Concer (-25mm -	itrate	Fine Concentrate (-6mm + 1mm)		Total Concentrate
-JP-	% Mn	('000 t)	% Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)
	15%	1,102	19	265	40	113	37	378
Detrital	10%	2,800	15	515	38	190	35	705
Detitiai	8%	3,509	14	579	37	194	35	772
	6%	3,921	13	599	37	194	31	792
Saprolite	15%	1,463	17	333	41	228	38	561
	10%	5,950	13	1,006	39	706	36	1,711
	8%	8,502	12	1,245	38	876	36	1,121
	6%	11,441	11	1,413	37	987	34	2,400
Transition	15%	640	18	153	41	102	38	254
	10%	1,495	15	279	40	187	37	466
	8%	2,322	13	351	39	237	36	587
	6%	3,694	10	410	34	276	31	686
Tailings	15%	627	22	1	-	163	38	163
	10%	977	19	-	-	254	37	254
	8%	1,055	18	-	-	264	37	264
	6%	1,119	17	-	-	264	35	264
All Material Types Hills 1 to 9	15%	3,832	18	751	40	605	38	1,356
	10%	11,221	14	1,799	39	1,337	36	3,136
	8%	15,388	13	2,174	38	1,570	36	3,744
	6%	20,175	11	2,422	37	1,721	34	4,143

Table 13: Detailed Unconstrained Measured and Indicated Resources by material type Matthew's Ridge (Hills $1\ {\rm to}\ 9)$

Material Type	Cutoff Grade	Tonnage	Grade	Lump Concentrate (-25mm + 6mm)		Fine Concentrate (-6mm + 1mm)		Total Concentrate
Туре	% Mn	('000 t)	% Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)
	15%	1,102	19	265	40	113	37	378
Detrital	10%	2,800	15	515	38	190	35	705
Detritar	8%	3,509	14	579	37	194	35	772
	6%	3,921	13	599	37	194	31	792
	15%	7,061	19	1,990	41	1,131	39	3,121
Saprolite	10%	16,562	16	3,570	39	2,053	37	5623
Sapronte	8%	21,711	14	4,024	39	2,344	36	6,368
	6%	29,367	12	4,202	32	2,455	30	6,657
Transition	15%	2,011	18	567	41	317	39	884
	10%	4,309	15	956	40	535	37	1,491
	8%	6,100	13	1,106	39	630	36	1,736
	6%	9,529	11	1,168	29	669	27	1,837
Tailings	15%	627	22	1	1	163	38	163
	10%	977	19	-	-	254	37	254
	8%	1,055	18	-	-	264	37	264
	6%	1,119	17	-	-	264	35	264
All Material Types Hills 1 to 9	15%	10,800	19	2,822	41	1,724	39	4,546
	10%	24,647	16	5,040	39	3,032	37	8,072
	8%	32,375	14	5,709	39	3,431	36	9,140
	6%	43,935	12	5,968	32	3,582	30	9,550

Table 14: Detailed Unconstrained Inferred Resources by material type Matthew's Ridge (Hills 1 to 9)

Material Type	Cutoff Grade	Tonnage	Grade	Lump Concentrate (-25mm + 6mm)		Fine Concentrate (-6mm + 1mm)		Total Concentrate
	% Mn	('000 t)	% Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)
Detrital	15%	63	20	16	40	7	37	23
	10%	177	15	33	38	13	36	46
Detritar	8%	311	13	47	37	14	35	61
	6%	344	12	48	37	14	32	62
	15%	735	20	214	42	119	40	334
Saprolite	10%	1,330	16	313	40	175	38	488
Sapronte	8%	1,428	16	322	40	180	38	502
	6%	1,986	13	332	32	187	30	519
Transition	15%	790	18	202	41	125	39	327
	10%	1,339	16	286	40	177	37	463
	8%	1,617	15	307	40	191	37	497
	6%	2,076	13	318	34	199	32	516
Tailings	15%	3	26	-	-	1	39	1
	10%	6	20	-	-	1	38	1
	8%	10	15	-	-	2	36	2
	6%	39	9	-	-	2	10	2
All Material Types Hills 1 to 9	15%	1,591	19	432	42	252	39	684
	10%	2,851	16	632	40	366	38	998
	8%	3,368	15	675	40	388	37	1,062
	6%	4,445	13	698	33	402	31	1,100

Table 15: Detailed Unconstrained Inferred Resources – Arakaka and Pipiani Prospects

Total Inferred	Cutoff Grade	Tonnage	Grade	Lump Concentrate (-25mm + 6mm)		Fine Concentrate (-6mm + 1mm)		Total Concentrate
	% Mn	('000 t)	% Mn	('000 t)	%Mn	('000 t)	%Mn	('000 t)
Detrital Arakaka prospect	15%	52	19	13	40	5	37	18
	10%	124	15	24	38	9	35	33
	8%	168	13	28	37	10	35	37
	6%	213	12	30	36	9	35	39
Detrital Pipiani prospect	15%	712	19	180	40	78	37	257
	10%	1,525	16	310	38	123	36	433
	8%	1,756	15	334	38	127	35	461
	6%	1,914	14	344	37	127	35	471

Figure 1 – Map of Matthews Ridge region

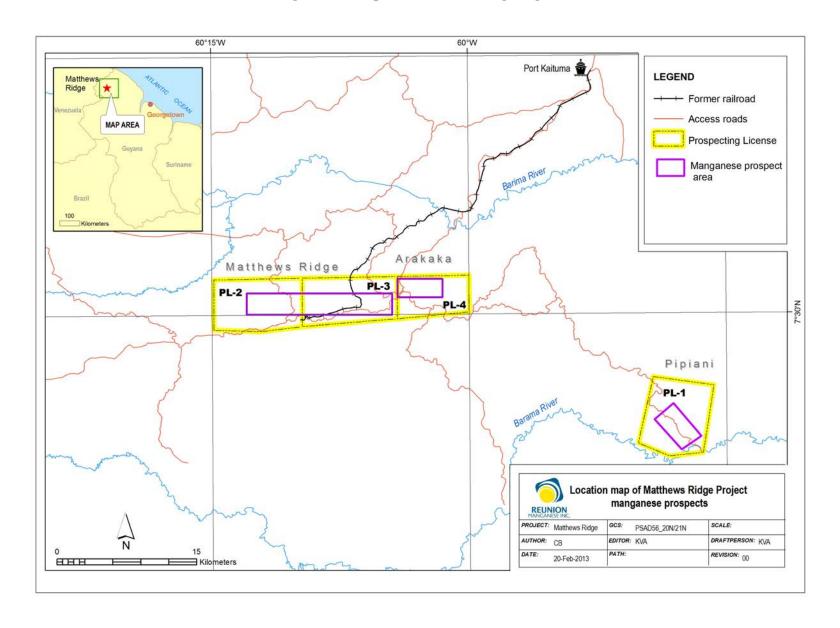
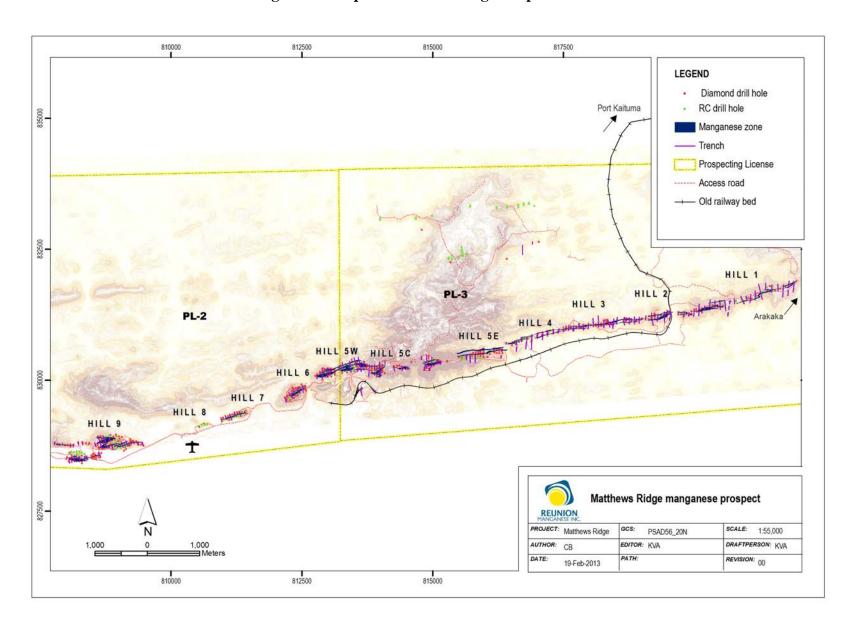



Figure 2 – Map of Matthews Ridge footprint area

